Features & Benefits

- High temperature resistance
- Rapid curing
- Ease of use – no mixing or heat cure
- 100% reactive, no solvents
- Cytotoxicity approved

Description

PERMABOND® 820 is a low viscosity modified ethyl cyanoacrylate suitable for applications where high temperature resistance is required. This material is fast setting and has good adhesion to rubber, metal and plastics.

Cyanoacrylate adhesives are single component adhesives that polymerize rapidly when pressed into a thin film between parts. The moisture adsorbed on the surface initiates the curing of the adhesive. Strong bonds are developed extremely fast and on a great variety of materials. These properties make PERMABOND® cyanoacrylates the ideal adhesives for high speed production lines.

Physical Properties of Uncured Adhesive

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Ethyl cyanoacrylate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Colourless</td>
</tr>
<tr>
<td>Viscosity @ 25°C</td>
<td>90-110 mPa.s (cP)</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Typical Curing Properties

Maximum gap fill	0.15 mm 0.006 in
Fixture / handling time*	10-15 seconds (Steel)
	10-15 seconds (Buna N Rubber)
	10-15 seconds (Phenolic)
Full strength	24 hours

*Handling times can be affected by temperature, humidity and specific surfaces being bonded. Larger gaps or acidic surfaces will also reduce cure speed but this can be overcome by the use of Permabond C Surface Activator (CSA) or Permabond QFS 16.

Typical Performance of Cured Adhesive

<table>
<thead>
<tr>
<th>Shear strength*</th>
<th>Steel 19-23 N/mm² (2800-3300 psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of thermal expansion</td>
<td>90 x 10⁻⁶ mm/mm/K°C</td>
</tr>
<tr>
<td>Coefficient of thermal conductivity</td>
<td>0.1 W/(m.K)</td>
</tr>
<tr>
<td>Hardness (ISO868)</td>
<td>85 Shore D</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>25kV/mm</td>
</tr>
</tbody>
</table>

*Strength results will vary depending on the level of surface preparation and gap.

Hot Strength

820 can withstand higher temperatures for brief periods (such as for paint baking and wave soldering processes) providing the joint is not unduly stressed. The minimum temperature the cured adhesive can be exposed to is -55°C (-65°F) depending on the materials being bonded.
The information given and the recommendations made herein are based on our research and are believed to be accurate but no guarantee of their accuracy is made. In every case we urge and recommend that purchasers before using any product in full-scale production make their own tests to determine to their own satisfaction whether the product is of acceptable quality and is suitable for their particular purpose under their own operating conditions. THE PRODUCTS DISCLOSED HEREIN ARE SOLD WITHOUT ANY WARRANTY AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED. No representative of ours has any authority to waive or change the foregoing provisions but, subject to such provisions, our engineers are available to assist purchasers in adapting our products to their needs and to the circumstances prevailing in their business. Nothing contained herein shall be construed to imply the non-existence of any relevant patents or to constitute a permission, inducement or recommendation to practice any invention covered by any patent, without authority from the owner of this patent. We also expect purchasers to use our products in accordance with the guiding principles of the Chemical Manufacturers Association’s Responsible Care® program.

Chemical Resistance

Specimens were immersed for 1000 hours at 22°C (unless otherwise stated)

Directions for Use

1) Apply the adhesive sparingly to one surface.
2) Bring the components together quickly and correctly aligned.
3) Apply sufficient pressure to ensure the adhesive spreads into a thin film.
4) Do not disturb or re-align until sufficient strength is achieved, normally in a few seconds.
5) Any surplus adhesive can be removed with Permabond CA solvent, nitromethane or acetone.

NB: For difficult or porous surfaces using a Permabond activator is recommended. If bonding polypropylene, polyethylene, PTFE or silicone, prime first with Permabond Polyolefin Primer (POP).

Additional Information

This product is not recommended for use in contact with strong oxidizing materials and polar solvents although will withstand a solvent wash without any bond strength deterioration. Users are reminded that all materials, whether innocuous or not, should be handled in accordance with the principles of good industrial hygiene. Full information can be obtained from the Safety Data Sheet.

Surface Preparation

Surfaces should be clean, dry and grease-free before applying the adhesive. Use a suitable solvent (such as acetone or isopropanol) for the degreasing of surfaces. Some metals such as aluminium, copper and its alloys will benefit from light abrasion with emery cloth (or similar), to remove the oxide layer.

Storage & Handling

Allow adhesive to reach room temperature before opening bottle to prevent condensation inside the bottle which can reduce shelf life.

Contact Permabond:

• Americas +1 732 868 1372
• US 800-640-7599
• Asia + 86 21 5773 4913
• Europe +44 (0) 1962 711661
• UK 0800 975 9800
• Deutschland 0800 111 388
• France 0805 111 388
info.americas@permabond.com
info.europe@permabond.com
info.asia@permabond.com